skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Pelkonen, Veli-Matti"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Context. The physical mechanisms that regulate the collapse of high-mass parsec-scale clumps and allow them to form clusters of new stars, including high-mass stars, represent a crucial aspect of star formation. Aims. To investigate these mechanisms, we developed the Rosetta Stone project: an end-to-end (simulations ⇔ observations) framework that is based on the systematic production of realistic synthetic observations of clump fragmentation and their subsequent comparison with real data. Methods. In this work, we compare ALMA 1.3 mm continuum dust emission observations from the Star formation in QUiescent And Luminous Objects (SQUALO) survey with a new set of 24 radiative magnetohydrodynamical (RMHD) simulations of high-mass clump fragmentation, post-processed using the CASA software to mimic the observing strategy of SQUALO (combining ACA and 12 m array). The simulations were initialized combining typical values of clump mass (500 and 1000 M) and radius (∼0.4 pc) with two levels of turbulence (Mach number,M, of 7 and 10) and three levels of magnetization (normalized mass-to-magnetic-flux ratio, µ, of ∼3, 10, and 100). Following the clump evolution over time with two initial random seeds projected along three orthogonal directions, we produced a collection of 732 synthetic fields. On each field, we performed source extraction and photometry using theHypersoftware, as in the SQUALO project, to quantitatively characterize how the initial conditions of the clump and the environment affect the observed fragmentation properties. Results. The synthetic observations of clump fragmentation at ∼7000 AU resolution revealed between 2 and 14 fragments per field, indicating a complex fragmentation process. Among the initial conditions of the simulations, magnetic fields have the largest impact on the fragment multiplicity at these scales. In advanced stages of clump evolution, a lower number of fragments is preferentially associated with magnetized clumps. The clump magnetization might also affect the clustering of fragments, favoring more tightly bound distributions when the magnetic field is stronger. Fragments identified at ∼7000 AU correspond to individual or multiple sink particles in ∼75% of the cases. This result suggests that not all identified fragments are actively forming stars. Both sink particles and fragments accrete mass throughout the whole clump evolution. This evidence favors a scenario in which fragments are not isolated from the environment and is thus consistent with results from the SQUALO survey. Conclusions. Our study demonstrates the importance of synthetic observations in interpreting results from interferometric observations. 
    more » « less
    Free, publicly-accessible full text available September 1, 2026
  2. Context. We started a multi-scale analysis of star formation in G202.3+2.5, an intertwined filamentary sub-region of the Monoceros OB1 molecular complex, in order to provide observational constraints on current theories and models that attempt to explain star formation globally. In the first paper (Paper I), we examined the distributions of dense cores and protostars and found enhanced star formation activity in the junction region of the filaments. Aims. In this second paper, we aim to unveil the connections between the core and filament evolutions, and between the filament dynamics and the global evolution of the cloud. Methods. We characterise the gas dynamics and energy balance in different parts of G202.3+2.5 using infrared observations from the Herschel and WISE telescopes and molecular tracers observed with the IRAM 30-m and TRAO 14-m telescopes. The velocity field of the cloud is examined and velocity-coherent structures are identified, characterised, and put in perspective with the cloud environment. Results. Two main velocity components are revealed, well separated in radial velocities in the north and merged around the location of intense N 2 H + emission in the centre of G202.3+2.5 where Paper I found the peak of star formation activity. We show that the relative position of the two components along the sightline, and the velocity gradient of the N 2 H + emission imply that the components have been undergoing collision for ~10 5 yr, although it remains unclear whether the gas moves mainly along or across the filament axes. The dense gas where N 2 H + is detected is interpreted as the compressed region between the two filaments, which corresponds to a high mass inflow rate of ~1 × 10 −3 M ⊙ yr −1 and possibly leads to a significant increase in its star formation efficiency. We identify a protostellar source in the junction region that possibly powers two crossed intermittent outflows. We show that the H  II region around the nearby cluster NCG 2264 is still expanding and its role in the collision is examined. However, we cannot rule out the idea that the collision arises mostly from the global collapse of the cloud. Conclusions. The (sub-)filament-scale observables examined in this paper reveal a collision between G202.3+2.5 sub-structures and its probable role in feeding the cores in the junction region. To shed more light on this link between core and filament evolutions, one must characterise the cloud morphology, its fragmentation, and magnetic field, all at high resolution. We consider the role of the environment in this paper, but a larger-scale study of this region is now necessary to investigate the scenario of a global cloud collapse. 
    more » « less